3 Technical Description and Specifications _____ Thank you for purchasing the **Arcsin**!

But the problem is that the angles we found do not fall in the range of **arcsin** x is given as [-*/2, */2]. So the answer will be x = 5*/3, but in terms of an angle in the range or **arcsine**.

**ARCSIN** Trigonometric Library Functions 7-18 September 3, 1996 DATAPLOT Reference Manual **ARCSIN** PURPOSE Compute the **arcsine** for a variable or parameter.

Thus the **arcsine** function has **arcsin** where and sin Since **arcsin** ( y ) is an arc length, the arc length formula can be applied to from to (see F IGURE 4) to find that 5 E y 0! 11 t 2 12 t 2 dt arc sins y d5 E y 0! 11 f 9 s t d 2 dt t 5 y t 50 f s t d5 !

_____ _____ _____ PREREQUISITE SKILLS REVIEW:Practice and review algebra skills needed for this section at www.Eduspace.com. y arctan x y cos 1 ≤ x ≤ 1 1 x 2 ≤ y ≤ 2 y **arcsin** x 333202_0407.qxd 12/7/05 11:10 AM Page 349

**Arcsin**(sin(x)).DVI. A Correct Simplifi cation for **Arcsin**(sin(x)) For any real number x,let Floor (x)be the great es tin teg er that is less than ore qualtox.

Tina MemoNo. 2002-007 Internal Report The Effectsofan **Arcsin** Square Root Transform ona Binomial Distributed Quantity. P.A. Bromileyand N.A. Thacker Last updated 13/6/2002 Imaging Science and Biomedical Engineering Division, Medical School, University of Manchester, Stopford Building, Oxford Road ...

Let L=sup{t 1: B t =0}, and fora>0, T a =inf{t: B t =a}, by previous work, for any t>0, P 0 (T a t) =2P 0 (B t a) =2 Z 1 a (2t) 1/2 exp (x 2 /2t) dx =2 Z 0 t (2t) 1/2 exp (a 2 /2s)(t 1/2 a/2s 3/2) ds = Z t 0 (2 s 3) 1/2 aexp (a 2 /2s) ds Use this formula, we have Theorem 18.4. For anys 2[0,1], P 0 (L s) = 2 **arcsin** (p s).

Integer Powers of **Arcsin** Jonathan M. Borwein ∗ and Marc Chamberland † February 25, 2007 Abstract: New simple nested sum representations for powers of the **arcsin**

**arcsin** 1 1 2 (1) plus prior trigonometric knowledge that **arcsin** ½ = /6, and his knowledge of the binomial theorem to derive: 3 5 2 4 5 2 1 3 2 3 2